Cardiac Hypertrophy After Transplantation Is Associated With Persistent Expression of Tumor Necrosis Factor-a
نویسندگان
چکیده
Background—The mechanisms that contribute to cardiac allograft hypertrophy are not known; however, the rapid progression and severity of hypertrophy suggest that nonhemodynamic factors may play a contributory role. Tumor necrosis factor-a (TNF-a) is a cytokine produced in cardiac allografts and capable of producing hypertrophy and fibrosis; therefore, we suggest that TNF-a may play a contributory role. Accordingly, the aims of our study were to define the role of systemic hypertension in the development of hypertrophy, characterize the histological determinants of hypertrophy, and characterize the expression of myocardial TNF-a after heart transplantation. Methods and Results—To separate the effect of hypertension from immune injury in the development of cardiac allograft hypertrophy, we measured the gain in left ventricular mass by 2D echocardiography in heart transplant recipients and lung transplant recipients who developed similar rates of systemic hypertension. The gain in left ventricular mass was 73% in heart transplant recipients and 7% in lung transplant recipients (P,0.0001). By comparing myocardial samples obtained during the first week after transplant and at 1 year, we found that there was a significant increase in total collagen content (P,0.0001), collagen I (P,0.0001), collagen III (P,0.0001), and myocyte size (P,0.0001). These changes were associated with persistent myocardial TNF-a expression. Conclusions—We suggest that the contribution of hypertension to cardiac allograft hypertrophy is minimal and that persistent intracardiac expression of TNF-a may contribute to the development of cardiac allograft hypertrophy. (Circulation. 2001;104:676-681.)
منابع مشابه
Cardiac hypertrophy after transplantation is associated with persistent expression of tumor necrosis factor-alpha.
BACKGROUND The mechanisms that contribute to cardiac allograft hypertrophy are not known; however, the rapid progression and severity of hypertrophy suggest that nonhemodynamic factors may play a contributory role. Tumor necrosis factor-alpha (TNF-alpha) is a cytokine produced in cardiac allografts and capable of producing hypertrophy and fibrosis; therefore, we suggest that TNF-alpha may play ...
متن کاملThe Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats
Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...
متن کاملThe effect of resistance training on the expression of cardiac muscle growth regulator messenger genes in obese male rats
Background: Obesity is associated with cardiovascular disease, followed by pathological cardiac hypertrophy. However, physical activity (resistance training) plays a role in modulating some of the intracellular messenger pathways associated with the regulation of pathologic hypertrophy. The aim of this study was to investigate The effect of resistance training on the expression of cardiac muscl...
متن کاملTumor necrosis factor receptor-associated factor 3 is a positive regulator of pathological cardiac hypertrophy.
Cardiac hypertrophy, a common early symptom of heart failure, is regulated by numerous signaling pathways. Here, we identified tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein in tumor necrosis factor-related signaling cascades, as a key regulator of cardiac hypertrophy in response to pressure overload. TRAF3 expression was upregulated in hypertrophied mice hearts ...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کامل